Education

Harvard University, M.S. in Data Science

Peking University, B.S. in Intelligence Science and Technology, Turing Class (Summa Cum Laude)

Experiences

Algorithm Developer Intern (Machine Learning Engineer Intern), Applied Materials May. 2024 - August. 2024

- Image Generation: Built an end-to-end image generation system with highly customizable user input and feedback (patent pending). Deployed a fully functional demo within two weeks using Gradio and achieved a 30% acceleration with TensorRT.
- Image Segmentation: Fine-tuned the Mask2Former and Segment Anything models for images with significant image-to-image variation, improving accuracy by 10%.
- **Pretraining**: Established self-supervising framework with DinoV2 and benchmarked on common downstream tasks.

Researcher, Harvard University

· Accelerating Agents: Working on improving the throughput of current LLM based tool-use agent systems through context switch and scheduling by tweaking the vLLM system.

Research Intern, Peking University (CoRe Lab)

- Physics Informed Deep Learning for Seismic Wave Simulation: Developed various datasets to simulate seismic waves and constructed physics-informed neural networks. Effectively addressed time domain extrapolation by applying physical constraints. The outcomes demonstrated an 75% reduction in relative error when extrapolating to previously unseen time points.
- Causal Reasoning: Optimized a neuro-symbolic causal discovery approach and implemented an object-centric model. Designed a structured neural network for causal discovery, achieving the performance reported in the paper using only 1/15 of the dataset, resulting in a 93% reduction in data usage.
- Word Learning: Built a dataset for machine word learning and evaluated vision-language baselines. Compared to human study results we conducted, state-of-the-art models showed deficiencies in word learning.

Undergraduate Visiting Researcher, Stanford University (Stanford Vision and Learning Lab) June 2022 - Aug. 2022

 Created a framework for visual relationship understanding using CLIP. Identified CLIP's deficiency in relationship understanding and proposed hard negative mining strategy that resulted in over a 40% accuracy improvement on the VRD dataset.

Research Intern, Peking University (ZERO Lab)

 Designed an adversarial training approach for domain generalization by leveraging the mathematical relationship between Invariant Risk Minimization and DAT objectives.

Skills

Languages: Python, C/C++, Rust, SQL, CUDA, Bash, R, JavaScript, HTML, CSS, MATLAB, Stata

Tools and Frameworks: Google, PyTorch, TensorFlow, Jax, Triton, Pandas, OpenCV, Kubernetes, GCP, AWS, HuggingFace, React, LangChain, Docker, Kubernetes, Git, Selenium, Flask, FastAPI, Streamlit, Gradio, NVIDIA Modulus, vLLM, DeepSpeed, Neo4J, Accelerate, CI/CD, Slurm, MLFlow

Publications

FastAgent (first author): Enhanced Scheduling Strategies for Efficient Tool-Integrated Large Language Model Serving. Compound AI Systems Workshop 2024 Paper

GlobalTomo: A global dataset for physics-ML seismic wavefield modeling and FWI. In Submission Project Page

MEWL: Few-shot multimodal word learning with referential uncertainty. ICML 2023 Project Page

On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization. (first author) AAAI 2023 (Oral) Paper

May 2025 (Expected)

July 2023

Nov. 2021 - Aug. 2023

June 2021 - Oct. 2021

Sept. 2023 -